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ABSTRACT
This paper studies the novel learning scenarios of Distribut-
ed Online Multi-tasks (DOM), where the learning individ-
uals with continuously arriving data are distributed sepa-
rately and meanwhile they need to learn individual model-
s collaboratively. It has three characteristics: distributed
learning, online learning and multi-task learning. It is mo-
tivated by the emerging applications of wearable devices,
which aim to provide intelligent monitoring services, such
as health emergency alarming and movement recognition.
To the best of our knowledge, no previous work has been

done for this kind of problems. Thus, in this paper a collabo-
rative learning scheme is proposed for this problem. Specif-
ically, it performs local learning and global learning alter-
nately. First, each client performs online learning using the
increasing data locally. Then, DOM switches to global learn-
ing on the server side when some condition is triggered by
clients. Here, an asynchronous online multi-task learning
method is proposed for global learning. In this step, only
this client’s model, which triggers the global learning, is up-
dated with the support of the difficult local data instances
and the other clients’ models. The experiments from 4 ap-
plications show that the proposed method of global learning
can improve local learning significantly. DOM framework
is effective, since it can share knowledge among distributed
tasks and obtain better models than learning them separate-
ly. It is also communication efficient, which only requires the
clients send a small portion of raw data to the server.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Machine Learn-
ing

Keywords
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1. INTRODUCTION
Many real world problems include a number of related

learning tasks, for which multi-task learning (MTL) [5, 9,
10, 29] methods are favorable, as they can learn multiple
related tasks together so as to improve the performance of
each task relative to learning them separately. In certain sit-
uations, the data are continually arriving, and online multi-
task learning methods [6, 30] are useful to efficiently learn
these data samples. All these methods require that the data
are collected at a centralized place, so that a central learner
can be used to learn all the tasks’ prediction models. Howev-
er, data and tasks are distributed on isolated clients in many
problems. At the same time, data are continually arriving,
which make them more challenging.

The emerging applications of wearable devices motivate
these tasks. Wearable devices are becoming more and more
prevalent these days. By various sensors these devices con-
tinuously collect the data from people and then provide
some intelligent services, such as health monitor, emergency
alarming, and movement recognition. The key component
on wearable devices is the prediction model for these moni-
tor services. However, the learning of the prediction models
should consider the following challenges. First, the sensors
on wearable devices usually have high sampling frequency,
and the local data may increase dramatically. Thus, we
need the online learning method for these models. Second,
since different person may have different activity patterns,
a distinct model should be learned for each user. Addition-
ally, for the complex tasks the local model should leverage
the knowledge from other devices for better prediction per-
formance. Thus, the multi-task learning scheme should be
adopted. Finally, since all these devices are distributed sep-
arately, we need to carefully consider the communication
overhead involved in the collaborative learning due to the
limited communication bandwidth and the shortage of de-
vice power.

By combining all these challenges, we actually face the
learning scenarios of Distributed Online Multi-tasks (DOM),
where the learning individuals with continuously arriving
data are distributed separately and meanwhile they need to
learn individual models collaboratively. Obviously, tradi-
tional centralized multi-task learning methods [5, 9, 10, 29]
are not suitable for these problems since they require that
all the data be collected to a central place and then do the
learning in batch mode. Previous online multi-task learning
methods [6, 30] can not be used for these problems because
in the learning process of these methods, one task must use
the raw training samples from all the other tasks, which is
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not feasible in our problem. Distributed online multi-task
learning problems has also been studied [15], but the main
focus of Dinuzzo et al. [15] is how to divided the overall com-
putation into each client, so that the server can do learning
more efficiently. The communication cost is too high for real
distributed applications, because each client should send all
their data to the server. Then, the server has to send all the
data from all the clients to each client.
To solve this problem, we assume that a global server

exists for coordinating the collaborative learning, and the
clients can only communicate with this server. In this client-
server setting, a collaborative scheme with local learning
and global learning alternatively is proposed. First, it in-
cludes the local online learning on clients. Each client can
learn from the local data and obtain a preliminary prediction
model. Second, on the server side, to efficiently incorporate
knowledge from multiple clients, an asynchronous multi-task
learning method is proposed. Specifically, only the client’s
model, which triggers the global learning, is updated with
the support of the difficult local data instances and the other
clients’ models. Compared to previous methods, this asyn-
chronous global learning strategy is more efficient for com-
putation and economical for communication. In these two
alternate steps, local learning depends on global learning
to obtain knowledge of other related clients, while global
learning is based on the results of local learning to reduce
the amount of raw training samples needed, which reduces
communication cost.
The main contributions of this paper can be summarized

as follows.
1. Problem Definition: we introduce a novel Distribut-

ed Online Multi-tasks (DOM) learning problem, which
has three prominent characteristics.

2. Framework: a collaborative learning scheme is pro-
posed, which performs local learning and global learn-
ing alternately.

3. Algorithm: an asynchronous online multi-task learning
method is proposed for global learning, which is more
suitable for DOM problem.

4. Experiments: it is tested on four real-world problems
to show the effectiveness of the DOM framework.

2. PROBLEM DEFINITION AND PRELIM-
INARIES

Notations. In this paper, [N : M ] (M > N) denotes
a set of integers in the range of N to M inclusively. ∥ · ∥
represents the Frobenius norm of a matrix. Il denotes the
l × l identity matrix. Some specific notations used in the
paper are summarized in Table 1.
The Distributed Online Multi-task (DOM) learning prob-

lem can be formally described as follows. Let T be the num-
ber of clients (number of tasks), they are connected to a
server, although different clients are not connected direct-
ly. For each client t ∈ [1 : T ], there are nt data examples
{(xt,i, yt,i)}i∈[1:nt] available, where xt,i ∈ Rd represents the
feature vector for the i-th example in the t-th task while yt,i
is its label. The dimension of the feature vector is d. For sim-
plicity, this paper only considers binary classification prob-
lems, i.e., yt,i ∈ {−1, 1}. These data come in sequentially in
time, i.e., the i-th example arrives before the (i + 1)-th ex-
ample. This is a distributed learning problem, because each

Table 1: Notations Used in the Paper
Notation Description

T The number of clients (tasks)
nt Number of labeled training samples in client t

xt,i
d dimension feature vector for the i-th sample in
client t

yt,i Class label of the i-th sample in client t
d Dimension of the feature vector for data samples

wt
Weight vector represents the prediction model for
client t

k Clients’ buffer size

l
Maximum number of samples a client can send to
the server in one interaction

Dt
The collection of representative samples client t sent
to the server in one interaction

A
A T × T symmetric matrix represents the relations
between different tasks

at
The t-th column of A, represents the relations
between the t-th task and other tasks

client does not have access to the data from other clients,
and the clients can not transmit all their data to the server
due to communication cost and privacy issues. The goal is
to progressively train a distinct model with the continual-
ly arrived examples for each client, as different clients have
distinct patterns. However, because these clients are related
to each other, we need to devise a communication efficient
method to share knowledge among them to obtain better
models. Clients and tasks have the same meaning in this
paper and they are used interchangeably in the paper.

3. OVERALL FRAMEWORK

3.1 Problem Analysis
In this paper, a simple form of linear predictor is used.

The goal is to learn a distinct model ft(x) = w⊤
t x for each

client t, which is a linear separator function parameterized
by weight vector wt ∈ Rd.

After receiving the representative data and the local mod-
el for a client, the server will do global multi-task learning.
Unlike in the centralized online multi-task learning [28], in
the method proposed in this paper, the server only learns
and updates the model for this client in this learning step
while keeping other clients’ models unchanged. This asyn-
chronous learning method for multiple tasks has several ad-
vantages. First, only computing the new model for a single
task each time can reduce the computation cost and make
the algorithm more efficient. Second, in this way, multi-
ple clients are more loosely coupled with each other. Each
client only takes advantage of other clients models, not the
frequently changing or even noisy training samples, which
keep the learning process more robust. Third, to guarantee
the models on clients and server are consistent, updating one
model each time means that the server only need to send one
model back to a client, which is more communication effi-
cient. Also, clients request the server to do global learning
asynchronously, so it is very natural to use this asynchronous
update method.

3.2 Proposed Framework
The overall framework for the distributed online multi-

task learning problem is shown in Figure 1. Clients make
request to do global learning, and the server will send the
updated models back to clients. The explicit interactions
between clients and the server are shown in Figure 2. The
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communication flow between clients and the server is rep-
resented by black dashed arrows. The main works done by
clients and the server are described in the following.

Client 1 Client TClient  tClient 2 ··· ···

Server

Request
Updated 

Model

Local learning

Global  Learning

Figure 1: The Overall Framework for the Distribut-
ed Online Learning Problem
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Figure 2: Communication between Client t and The
Server

Learning on Clients. In this part, the simple, fast
and state-of-the-art online learning method soft confidence-
weighted classifier (SCW) [31] can be used by clients. Using
this method, the learned model can be represented by a
weight vector wt, which is convenient to transmit between
clients and the server. Although the data arrive continual-
ly in each client, to facilitate the manipulation of the da-
ta transmission process, clients interact with the server by
dealing with the data block-by-block at the clients. It is sup-
posed that each client contains a buffer with size k, which
can store a small number of samples. After a whole block
of samples are learned by the client, this client will obtain a
newly updated prediction model. Then, to request the server
to do global multi-task learning for it, a client need to send
some representative data Dt and its current model wt to the
server. Usually, it is restricted that a maximum number l of
samples can be sent for each block learning process.
Learning on The Server. For the server, it keeps all

the clients’ latest models {wt}t∈[1:T ] and their relations A.
A is a T × T matrix, each of its element ai,j represents the
correlation between the i-th and j-th tasks. We propose an
asynchronous multi-task learning method for server. Up-
on request by a client, the server will conduct global online
multi-task learning for this specific client, i.e., update the
model for this client while keep other clients’ models un-
changed. The multi-task learning method should produce a
linear prediction model, which the server will send back to
the client to help client’s later local learning process.

In summary, in our framework the local learning on clients
and global learning on the server work collaboratively to im-
prove the performance of distributed online multi-task learn-
ing problem, and efficiently alleviate the privacy-preserving
concern and communication cost.

4. GLOBAL LEARNING ON THE SERVER

4.1 Global Multi-task Learning
Recall that the server maintains the latest models {wt}t∈[1:T ]

for all the clients. When a client requests the server to do the
global learning for it, it will send its new model wt and some
representative data Dt = {(xt,i, yt,i)}i∈[1:lt] to the server,
where lt is the number of samples.

To do online multi-task learning, it is important to cor-
relate multiple tasks to let them collaborate with each oth-
er in the learning process. Usually, a correlation matrix
A ∈ RT×T is used to represent the relations between d-
ifferent tasks. Previous online multi-task learning method
assumes that prior knowledge about task relations is avail-
able in the form of correlation matrix A [7]. In this paper,
the more flexible way to adaptively learn the correlation ma-
trix in the learning process is adopted. Also, different from
previous works, the models for different tasks are updated
asynchronously. Each time, it only updates the model for
the client that requests the server to do the global learning.
This update strategy is more computation efficient. Differ-
ent clients only loosely couple with each other, which makes
the algorithm more robust. In this paper, it is assumed that
the correlation matrix A can have both positive and nega-
tive values, which means it can deal with both positively and
negatively related tasks. The t-th column of A is denoted as
at = [a1,t, a2,t, . . . , aT,t]

⊤, where aj,t represents the relation
of the j-th and t-th tasks. To sequentially learn each sample
(xt,i, yt,i) for task t, the optimization problem is as follows:

min
w′

t,a
′
t

(
−

T∑
j=1

a′j,tw
′
t
⊤
wj

)
+ βl(w′

t, (xt,i, yt,i)) + γ∥w′
t∥2

⇒ min
w′

t,a
′
t

−w′
t
⊤
Wa′t + βl(w′

t, (xt,i, yt,i)) + γ∥w′
t∥2 (1)

subject to: a′t,t = 1,

T∑
j=1
j ̸=t

(a′j,t)
2 = η

where w′
t is the new model after update, a′t is the updated

correlations, the matrixW = [w1, w2, . . . , wT ], l(w
′
t, (xt,i, yt,i))

is the hinge loss function defined as follows:

l(w′
t) =

{
0 if yt,iw

′
t
⊤
xt,i ≥ 1

1− yt,iw
′
t
⊤
xt,i otherwise

(2)

The first term in the optimization problem (1) correlates
multiple clients’ models and let one task take advantage of
other tasks. It implies that when a′j,t is large, the two tasks

are strongly correlated and we expect w′
t
⊤
wj will also has

a large value. l(w′
t, (xt,i, yt,i)) is the hinge loss function to

guarantee the correctness of the method. The last term is a
regularization term to control the complexity of the model.
The constraint a′t,t = 1 suggests that each task is positively

related with itself. Constraint
∑T

j=1,j ̸=t(a
′
j,t)

2 = η is used
to restrict the absolute values of the correlations between
this client and other clients. These correlations are used
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in the optimization problem and their absolute values will
determine how the other clients can influence a certain client
that are currently being learned. The effect of other clients’
models can be controlled by setting different values for η.
The weight vector γ controls the complexity of the model.
In this paper, it is fixed as γ =

∑T
j=1 |a

′
j,t|. Initial value

of the correlation matrix is set as A = IT , which means at
start we assume different tasks are irrelevant to avoid any
error bias.
Simultaneously optimizing w′

t and a
′
t in problem (1) is dif-

ficult, so we alternately optimize one variable while the other
is fixed. Denote the objective function in problem (1) as Ft,
when the loss is larger than zero, the objective function’s
derivative with respect to w′

t is:

∂Ft

∂w′
t

= −Wa′t − βyt,ixt,i + 2γw′
t. (3)

When a′t are fixed, and let the derivative in Eq.(3) equal to
zero, the following solution can be obtained:

w′
t =

βyt,ixt,i +Wa′t
2γ

. (4)

When w′
t is given, the optimization problem (1) becomes

the following constrained optimization problem:

min
a′
t

−w′
t
⊤
Wa′t (5)

subject to: a′t,t = 1,
T∑

j=1
j ̸=t

(a′j,t)
2 = η

It can be solved using Lagrange method, which gives the
solution:

a′j,t =
w′

t
⊤
wj√∑T

j=1
j ̸=t

((
w′

t
⊤wj

)2
/η
) (6)

4.2 Communication Overhead
When a client requests the server to do the global multi-

task learning, it will send its current model and some repre-
sentative samples to the server. Then, server will send the
newly updated model back to the client. So, in one interac-
tion, a client sends one prediction model and l representative
samples to the server, and the server sends a model back to
the client. The communication cost in one interaction is l+2
vectors, each vector has the same size as a data sample. The
total communication cost for the T clients and the server in
the overall learning process is:

T∑
t=1

⌈nt

k
⌉(l + 2) (7)

where ⌈x⌉ represents rounding the number x to the nearest
integer towards infinity, nt is the number of training sam-
ples for task t, k is the buffer size. It can be seen that the
communication cost can be easily controlled by changing the
values of k and l.
In fact, in the distributed online learning scenario, even if

the clients transmit all their data to the server and server
do centralized online multi-task learning, the server should
also repeatedly send the learned models to clients, so that
clients can use the up-to-date models for prediction. So, the
model transmission is unavoidable, and we mainly consider
how to reduce the raw data transmitted to the server.

5. LOCAL LEARNING ON CLIENTS
Data are continually arriving at the clients, so the clients

must be able to do the single task online learning. Also,
to take advantage of the models of other clients, it should
interact with the server to exchange knowledge among them.
These interactions will cause communication cost and affect
the learning process of the server and clients, which need
special attentions.

5.1 Local Single Task Online Learning
One work of the clients is to do the local single task online

learning to incrementally learn the classification models. In
this part, the simple, fast and state-of-the-art online learn-
ing method soft confidence-weighted classifier (SCW) [31] is
used. For each client t, SCW assumes a Gaussian distribu-
tion of weights with mean vector wt ∈ Rd and covariance
matrix Σt ∈ Rd×d. The mean wt corresponds to the lin-
ear classifier as described in Section 3. When a new sample
(xt,i, yt,i) comes in, SCW updates the model by solving the
following optimization problem:

min
w′

t,Σ
′
t

DKL

(
N(w′

t,Σ
′
t)∥N(wt,Σt)

)
+

Cmax
(
0, ϕ
√
x⊤t,iΣ

′
txt,i − yt,iw

′
t
⊤
xt,i
)
, (8)

where ϕ controls the confidence of each update, and C bal-
ances between conservativeness and aggressiveness. DKL

means the Kullback-Leibler divergence. Through minimiz-
ing the divergence between the newly estimated weight dis-
tribution and the previous one, it can avoid the parameters
change dramatically in each update and keep the algorith-
m robust against noises. The second term guarantees the
correctness of the algorithm.

This optimization problem has closed-form solution, which
is expressed as follows:

w′
t = wt + αtyt,iΣtxt,i, Σ′

t = Σt − βtΣtx
⊤
t,ixt,iΣt (9)

where the updating coefficients are as follows:

αt = min{C,max{0, 1

νtζ
(−mtψ+

√
m2

t

ϕ4

4
+ νtϕ2ζ)}} (10)

βt =
αtϕ√

ut + νtαtϕ
(11)

where ut = 1
4
(−αtνtϕ +

√
α2
tν

2
t ϕ

2 + 4νt)
2, νt = x⊤t,iΣtxt,i,

mt = yt,iwt
⊤xt,i, ϕ = Φ−1(η), ψ = 1 + ϕ2

2
and ζ = 1 + ϕ2.

In this paper, the parameters for SCW are fixed as C = 1,
η = 0.6 and ϕ = Φ−1(η).

SCW have many advantages. SCW improves over the o-
riginal confidence-weighted (CW) [13] algorithm by adding
the capability to handle the non-separable cases, and im-
proves over adaptive regularization of weights (AROW) [14]
by adding the adaptive margin property [31]. SCW also
enjoys the large margin training and confidence weighting
properties. It can achieve better predictive accuracy and is
more computational efficient [31].

5.2 Trigger Conditions for Global Learning
Local learner SCW can obtain a prediction model rep-

resented by wt and a covariance matrix Σt ∈ Rd×d that
captures the relations between different features. Although
Σt is beneficial for the later learning process, it can not be
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transmitted to the server due to its large size. To simplify
the interaction process, suppose each client has a buffer of
size k. A client interacts with the server when its buffer is
full. In each interaction, the client will select at most l rep-
resentative samples from the buffer and send them to the
server. The samples must be carefully selected so that the
most useful samples are selected. In this paper, the sam-
ples that have the largest hinge loss are selected, as they
are the most difficult for local model to discriminate. This
trigger condition for global learning is called Regular Trigger
Condition and it is the default trigger condition used in the
paper. Although global learning is triggered when a client
has learned a certain number of samples (buffer size), our
DOM framework makes no special requirement that mul-
tiple tasks must be synchronized when do global learning.
Since the data arrive at different nodes with different speeds,
the clients may trigger the global learning for updating its
own model at different time points. Thus, it is actually an
asynchronous process.
After receiving the updated model, this client will take the

newly learned model by the server as its current model and
it is the starting point for its later learning. So, the server
and clients must use the same prediction model formulation
and they should be compatible with each other.
At the initial stage of the learning process, the models

clients learned may not be so accurate. In this case, letting
these clients learn from each other could even be harmful.
So, in the beginning, a client will learn a certain number
of samples before sending its model to the server to do the
initial global learning. When it sends model to server, the
model is at least a weak classifier.
Adaptive Trigger Condition. In the above, the trigger con-

dition for global learning is easy to understand with clear
analysis on communication cost. Compared with this Reg-
ular Trigger Condition, we can also dynamically trigger the
global learning based on the number of misclassified in-
stances by local learning. In other words, when more er-
rors occur in local learning, we trigger the global learning
more frequently. Specifically, client can store the samples
that are misclassified by the local model in its buffer. When
error number reaches a certain number l′, client will send
these l′ samples to the server for global learning. We have
tested the performance of this Adaptive Trigger Condition
on all the datasets. However, the results are similar to the
results with Regular Trigger Condition in terms of model
accuracy and communication overhead. So, only the result-
s with Regular Trigger Condition are given in Experiments
section.

6. EXPERIMENTS
In this section, we evaluate the effectiveness of the pro-

posed algorithm for the Distributed Online Multi-task (DOM)
learning problem.

6.1 Datasets
Four real world datasets are used to test our algorithm,

two of them are text datasets and the other two are image
datasets. Some statistics of the datasets are summarized in
Table 2, where np and nn denote the number of positive
and negative samples in each task, respectively. nt is the
number of labeled training samples in each task, and the
rest samples are used as testing set.
Email Spam: The first dataset is the ECML/PKDD

Table 2: Description of the Datasets
Dataset T d np nn nt

Email Spam 15 3000 200 200 250
Sentiment 4 3000 1000 1000 1000
NUS-WIDE

12 636 327 ∼ 481 321 ∼ 951 500
Object

Imagenet 9 1000 1400 ∼ 2086 1117 ∼ 1444 1000

2006 email spam dataset [3]. It includes 15 persons’ emails,
each person has 400 emails, which form 15 tasks (clients).
These emails are labeled as spam or not. The goal is to
learn a distinct prediction model for each person to classify
emails. The tf-idf weighting scheme is adopted to represent
the samples. Also, we have normalized the features to ensure
that each sample’s feature vector has norm 1.

Sentiment: The Multi-Domain Sentiment Dataset con-
tains product reviews taken from Amazon.com from four
product types (tasks), namely, books, dvd, electronics and
kitchen [4]. The reviews are split into two classes, positive
and negative. The goal is to learn a distinct prediction model
for each product type. The features used are tf-idf features.

NUS-WIDE Object: In NUS-WIDE Object web image
database [11], each image is annotated by objects such as
“cars”,“dog”, and etc. We select the images only belonging
to one class. Similarly, we have normalized the features to
ensure that each sample’s feature vector has norm 1. We
randomly select 7 classes that have not too few samples to
form 12 tasks, the goal is to classify different classes. The
tasks are shown in Table 3.

Table 3: Tasks for NUS-WIDE Object Dataset
Task T1 T2 T3 T4 T5 T6

Positive Class cars statue leaf cars statue leaf
Negative Class elk elk elk dog dog dog

Task T7 T8 T9 T10 T11 T12
Positive Class cars statue leaf cars statue leaf
Negative Class horses horses horses cat cat cat

Imagenet: ImageNet1 is an image database organized
according to the WordNet hierarchy. For the images, the
1000-dimension bag-of-word representations [24] based on
raw SIFT [25] features provided by the ImageNet are used.
We have normalized the features to ensure that each sam-
ple’s feature vector has norm 1. We randomly select 6 class
to form 9 tasks, the goal is to classify different classes. The
tasks are shown in Table 4.

Table 4: Tasks for Imagenet Dataset
Task T1 T2 T3

Positive Class leopard lion tiger
Negative Class persimmon persimmon persimmon

Task T4 T5 T6
Positive Class leopard lion tiger
Negative Class orange orange orange

Task T7 T8 T9
Positive Class leopard lion tiger
Negative Class lemon lemon lemon

6.2 Experimental Settings
Previous multi-task learning methods cannot be used in

the situation that data are distributed on different clients
and at the same time, new data are continually arriving
and real-time online learning is necessary. So, we compare
our algorithm with the single task online learning algorithm
SCW, which learns each task separately. This algorithm is

1http://image-net.org/download-features
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also the local algorithm each client uses in our distributed
online multi-task learning (DOM) algorithm.
OMT. Furthermore, we compare DOM algorithm with

the centralized online multi-task learning (OMT) algorith-
m [7]. This algorithm requires the prior knowledge of task
correlations, so the pairwise distance interaction matrix giv-
en in Eq.(4) in its original paper [7] are used. Although
OMT collects all the data to a cental place and each task
have access to the data from all the other tasks, it is not nec-
essarily better than DOM which contains two collaborative
learners.
MTRL. Multi-task relationship learning (MTRL) [34] is

a centralized multi-task learning algorithm. It is not an
online algorithm. Since in this algorithm, all the tasks have
access to the data from all the other tasks, and they stored
all the data from beginning to do learning in the batch mode,
it is supposed that it can obtain better results than DOM
algorithm. It is used as an baseline to shown whether DOM
can obtain comparable results to MTRL algorithm. We have
used cross validation methods to select the parameters λ1

and λ2 used in MTRL algorithm.
In these experiments, we want to show the effectiveness of

DOM algorithm and how the parameters affect the perfor-
mance and communication overhead. The effectiveness can
be shown in two aspects. One is that whether DOM is better
than only using SCW for each task separately and whether
DOM obtains comparable or even better results than OMT
and MTRL algorithms which require all the data be collect-
ed to a same place. The other one is that, within DOM
algorithm, whether global learning can help improve the re-
sults of local learning.
In each experiment, we randomly held out a number of

samples for testing. The remaining data are used as train-
ing set. To reduce the effect of randomness, for each dataset,
5 random permutations of the samples are used to test the
algorithms, and the mean results are given. For compari-
son, we test the single task online leaning algorithm SCW
and OMT algorithm at regular intervals of buffer size, and
calculate the accuracy of its current model for the testing
data.
At the start of the learning process of our multi-task learn-

ing, clients learn at least 30 training samples before request-
ing the server to do global learning. That is because global
learning is the most beneficial when each client’s model is
not so bad. For all the problems, we set β = 0.01, the buffer
size k = 20 and select l = 2 (10%) samples to send to the
server in each interaction. η is set as 0.01 for Sentiment
dataset and 0.001 for other datasets.

6.3 Experiment Results
The number of training samples nt for each data set is

shown in Table 2. The mean classification accuracy for 5
runs are displayed in Table 5. It can be seen that, for NUS-
WIDE Object dataset, for 10 out of 12 tasks, our DOM al-
gorithm obtains improved results compared to learning each
task separately. For every task in the other three datasets,
DOM algorithm always obtains improved results compared
to learn each task separately. So, DOM algorithm is supe-
rior to SCW algorithms, which demonstrates that our algo-
rithm can effectively share knowledge among multiple tasks
and obtain better prediction models. It is interesting to see
that our DOM algorithm is also better than centralized on-
line multi-task algorithm OMT, which require all the data

Table 5: Classification Accuracy for Four Problems
(a) NUS-WIDE Object

Task T1 T2 T3 T4 T5 T6
SCW only 0.866 0.709 0.842 0.829 0.753 0.820

OMT 0.835 0.667 0.819 0.816 0.739 0.802
DOM 0.874 0.720 0.838 0.847 0.773 0.839
Task T7 T8 T9 T10 T11 T12

SCW only 0.815 0.700 0.857 0.841 0.725 0.813
OMT 0.804 0.697 0.807 0.826 0.707 0.793
DOM 0.833 0.728 0.848 0.849 0.741 0.818

(b) Email Spam

Task T1 T2 T3 T4 T5
SCW only 0.919 0.944 0.952 0.901 0.909

OMT 0.908 0.941 0.952 0.896 0.892
DOM 0.959 0.963 0.975 0.932 0.928
Task T6 T7 T8 T9 T10

SCW only 0.928 0.820 0.907 0.931 0.888
OMT 0.925 0.847 0.905 0.912 0.911
DOM 0.953 0.873 0.931 0.959 0.936
Task T11 T12 T13 T14 T15

SCW only 0.905 0.888 0.944 0.893 0.913
OMT 0.915 0.899 0.937 0.847 0.911
DOM 0.931 0.943 0.969 0.904 0.949

(c) Imagenet

Task T1 T2 T3 T4 T5
SCW only 0.919 0.926 0.925 0.919 0.910

OMT 0.920 0.888 0.918 0.922 0.911
DOM 0.929 0.937 0.936 0.930 0.931
Task T6 T7 T8 T9

SCW only 0.922 0.930 0.927 0.930
OMT 0.914 0.915 0.913 0.922
DOM 0.935 0.936 0.939 0.943

(d) Sentiment

Task T1 T2 T3 T4
SCW only 0.781 0.805 0.826 0.843

OMT 0.734 0.771 0.789 0.804
DOM 0.806 0.820 0.855 0.863

be collected at a same place. The reason maybe that: (a)
OMT requires prior knowledge about task correlations, and
a fixed interaction matrix given in Eq.(4) in its original pa-
per [7] may not reflect the real task correlations. (b) Our
DOM algorithm contains two collaborative learners, which
is more robust.

To show the incremental online learning process more ex-
plicitly, we display how the accuracy changes with the in-
creasing training sample numbers in Figure 3. In DOM algo-
rithm, if through sharing knowledge among multiple tasks,
global learning obtains improved result compared to local
learning in each interaction, a red bar is plotted, and its
length represents the absolute accuracy improvement. Sim-
ilarly, if global learning failed to improve the local learning
results, a blue bar is plotted. Due to the space limit, for
each problem, we only display the two tasks that DOM ob-
tains the largest improvement and the smallest improvement
compared to SCW algorithm according to the final results
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in Table 5. It can be seen that, for most tasks, our DOM al-
gorithm is superior to the single task SCW algorithm in the
whole learning process. In addition, these improvements are
obtained at the cost of only transmitting 10% of the sam-
ples to the server, which is communication efficient. DOM is
also better than the centralized online multi-task algorith-
m OMT, which require all the data be collected at a same
place. MTRL is better than DOM in most cases. Howev-
er, DOM can obtain comparable result with MTRL when
the number of training samples is large. So, our alternately
two-learner DOM algorithm is very effective for distributed
multiple tasks. Global learning within DOM algorithm is
very beneficial, as it can be seen that, in most cases, it can
help improve the local models.
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Figure 3: Classification Accuracy for Four Datasets

6.4 Parameter Analysis
Most of the parameters in DOM can be easily set, and

only one parameter may need further tuning to obtain better
results. Due to the space limitation, only the results for the
first task in each problem are shown.

6.4.1 Number of Samples Sent to The Server
We first analyze the effect of parameter l, which is the

number of samples that can be sent to the server in one in-
teraction. The value of l controls the communication cost
of our algorithm. We fix the buffer size k as 10, and set l =
{1, 2, 4, 6, 8, 10}, respectively, which correspond to {10%, 20%,
40%, 60%, 80%, 100%} of the data samples can be sent to the
server. For each dataset, the first task’s result is shown in
Figure 4. It can be seen that, for Email Spam and Sentiment
datasets, the accuracy slightly improves with the increasing
number of l. The improvement is not so significant, especial-
ly when the number of total training samples is large. In this
paper, to reduce communication cost, for all the datasets,
only 10% of the data samples are sent to the server in each
interaction.
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Figure 5: Different k for Sentiment Dataset

6.4.2 Buffer Size k
To analyze how buffer size influences the performance,

we set k = {10, 40, 100}, respectively. We correspondingly
set l = 0.1k. The results are given in Figure 5. In this
comparison, since the value of l is fixed, the total number
of data instances sent to the server is also fixed. Assume
that the total number of training data on each client t is
nt. Then, the total number of instances sent to the server
equals to 0.1nt. Each time a client only sends 0.1k instances
to the server. Thus, the total number of times that a client
send data equals to nt

k
(This number is also the times for

global learning triggered by client t). Therefore, the value
of k actually controls the time when the data from clients
arrive at the server. The smaller the value of k is, the earlier
the data arrive at the server.

As shown in Figure 5, with different settings of k all the
curves converge to the same value eventually. It indicates
that the final model accuracy is not sensitive to k (since the
total number of instances sent to the server is the same).
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However, in the learning process smaller k outputs better
performances since the data from the clients arrive at the
server earlier to trigger the global learning.

6.4.3 Weighting Parameter β
Parameter β in Eq.(1) controls the importance of the

training data. We set β = {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e−
5, 1e − 6}, respectively. The result are shown in Figure 6.
It can be seen that, DOM algorithm’s performance is rela-
tive stable with different β values used in this experiment,
except for the NUS-WIDE Object dataset with β = 0.1. In
this paper, we set β = 0.01 for all the datasets.
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Figure 6: Classification Accuracy against Different
β

6.4.4 Constraint Parameter η
Parameter η in Eq.(1) constraint the correlations between

different tasks and the influences of other tasks for a par-
ticular task. To analyze the effect of parameter η, we set
η = {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6}, respective-
ly. The accuracy is shown in Figure 7. It can be seen that,
different η values affect the performance of DOM algorith-
m. So, parameter η need to be fine tuned to obtain better
results.
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η

6.4.5 Minimum Number of Samples for Local Learn-
ing before Initial Global Learning

To guarantee the local models learned by clients are not
so bad when they are sent to the server and be used by other
clients, user may want the clients send their models to the
server after they learned a certain number of samples and
obtained good models. We want to know how the number
of samples clients learned before initial global learning af-
fects the performance of the algorithm. We set this number
equals to {10, 30, 50, 70, 90, 110}, respectively. The results

are shown in Figure 8. It can be seen that, for Sentiment
dataset, it needs at least 30 samples to be learned by clients
before doing global learning to obtain good results. The
number of samples needed is very small. In this paper, we
set the minimum number equal to 30 for all the datasets.
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Figure 8: Classification Accuracy against Different
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Learning (Sentiment dataset)

To sum up, the buffer size k, number l of samples sent to
the server in each interaction, minimum local sample num-
ber and weighting parameter β can be easily set and our
algorithm can obtain good results in a wide range of param-
eter settings. Only the constraint parameter η need to be
tuned by users.

7. RELATED WORKS
Online learning, multi-task learning and distributed data

mining are three different learning scenarios. Traditionally,
they are studied separately, some works also start to try to
solve problems with more than one of these characteristics.

Online learning method [20, 36, 37] learns a set of data
samples that arrive sequentially in time. At each time step,
the algorithm processes an incoming sample and update the
prediction model accordingly. The computation of online
learning methods cannot be too complex, as they are effi-
cient real-time learning algorithms. Online learning has also
been applied to a wide range of applications [23]. Online
learning has been thoroughly studied and a variety of online
learning algorithms have been proposed. The first kind is the
first-order algorithms include the classical Perceptron algo-
rithm [26] and the well-known Passive-Aggressive algorith-
m [12]. Recently, second-order online learning algorithms
are studied extensively. It has been shown that, by using
parameter confidence information, second-order algorithms
can improve online learning performance [8]. Confidence-
weighted learning maintains a Gaussian distribution over
the linear prediction models, which is also used to guide the
model updating process [17]. However, due to its strict as-
sumption that all the data samples are separable, it takes
aggressive update rules and can cause overfit problem in
certain situations. To improve this algorithm, Adaptive
Regularization of Weights algorithm relaxes the separable
assumption, which is capable to deal with noisy and non-
separable data [14]. However, because it directly adds loss
and confidence regularization, it loses the adaptive margin
property [31]. In Soft Confidence-Weighted (SCW) learn-
ing method, the adaptive margin method assigns different
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margins for different instances via a probability formulation,
which is more robust to handle noisy and non-separable da-
ta, and is also more effective and efficient [31]. Online s-
parse kernel learning has also been proposed to online learn
a kernel classifier with a bounded number of support vec-
tors [33]. SCW has the large margin, adaptive margin, con-
fidence weighted properties and is able to deal with non-
separable data. So, in this paper, it is taken as the local
online learning method on the clients.
Multi-task learning (MTL) conducts multiple related learn-

ing tasks simultaneously so that the useful information in
one task can be used for other tasks. Traditional MTL meth-
ods consider the centralized learning scenario that all the
data are collected at a same place, where each task has ac-
cess to all the data from other tasks, which is different from
our problem settings. The earliest MTL method [5] learns a
shared hidden layer representation for different tasks. Multi-
task feature learning learns a low-dimensional representation
which is shared across a set of multiple related tasks [2, 19].
The methods to learn predictive structures on hypothesis s-
paces from multiple learning tasks are also proposed [1, 9].
Supposing that all the tasks are similar, a regularization for-
mulation is proposed for MTL [18]. MTL can be modeled by
stochastic process methods, such as [29, 32]. To deal with
outlier tasks, a robust multi-task learning algorithm is pro-
posed [10]. MTDA algorithm [35] is a single view multi-task
learning algorithm that can deal with learning tasks with d-
ifferent data representations. Multi-task learning with mul-
tiple views (MTMV) are also studied. CSL-MTMV [21] is a
shared structure learning framework, which can learn shared
predictive structures on common views from multiple relat-
ed tasks, and use the consistency among different views to
improve the performance. MAMUDA [22] can solve MTMV
problems with heterogeneous tasks. All these algorithms are
designed for centralized multi-task learning problems and
they learn in the batch mode, that cannot do the real-time
online learning.
Centralized multi-task learning under the online learning

setting has also been studied. In online multi-domain learn-
ing [16], it first uses single task online learning method to
learn a model for each task separately, and then proposes
a method to combined all these models into a synthesized
model. Cavallanti et al. [6] introduced new Perceptron-
based algorithms for the online multi-task binary classifi-
cation problem. They have proven that, under suitable reg-
ularity conditions, multi-task learning algorithms can im-
prove on single task learning by a factor proportional to
the number of tasks, which demonstrates the effectiveness
of online multi-task learning. Saha et al. proposed an on-
line multi-task learning algorithm that can adaptively learn
task relationships [28]. It dose not assume fixed task relat-
edness, which makes it more flexible to deal with real world
problems. Sun et al. proposed an online multi-task learning
method to solve the human activity recognition problem-
s [30]. Their major motivation for using online training al-
gorithm is to speed up the training process. Instead of using
batch training methods such as, steepest gradient descen-
t, conjugate gradient descent, and limited-memory BFGS,
they employed the online training method stochastic gradi-
ent descent to solve their problem. There are also efforts to
solve multi-task learning in a lifelong learning setting [27].
All these algorithms are centralized learning algorithms, s-
ince not only the centered learner has access to all the data

from all the tasks, each task can also obtains other tasks’
data if it finds it is necessary. So, they are not suitable for
our problems that the data are distributed stored and no
one can obtain a whole copy of the data from all the tasks.

Dinuzzo et al. studied the online multi-task learning from
distributed datasets [15]. They divided the overall compu-
tation into each client and the server can do learning more
efficiently. Also, their method can preserve privacy of indi-
vidual data. More specifically, although each client has ac-
cess to the data from other clients, it does not know which
client a particular data sample belongs to. However, the
communication cost in this method is very high. Each clien-
t should send all their data to the server. Then, the server
has to send all the data from all the clients to each client.
Transmitting these huge amount of data between clients and
the server is not possible in many real world applications.
For example, a cell phone can not transmit all its data to
the server or receive all other persons’ data to help its local
learning process.

8. CONCLUSIONS
In this paper, we formulated a new type of multi-task

learning problem, i.e., distributed online multi-task learn-
ing problem. To solve it, a Distributed Online Multi-task
(DOM) learning framework is proposed, which includes col-
laborative local learning and global learning. An asynchronous
online multi-task learning method is proposed for the server,
which is more efficient for computation and economical for
communication. Our method can help the isolated clients to
learn from each other and obtain better results than learn
separately. There is no direct communication among differ-
ent clients and the server does not transmit a client’s data
to other clients, so data privacy is perfectly conserved. Most
of the parameters in the algorithm can be easily set. Also,
experiments have proved the effectiveness of our method.

9. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China (No. 61473273, 61473274, 61175052,
61203297), National High-tech R&D Program of China (863
Program) (No.2014AA015105, 2013AA01A606).

10. REFERENCES
[1] R. K. Ando and T. Zhang. A framework for learning

predictive structures from multiple tasks and
unlabeled data. JMLR, 6:01, 2005.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task
feature learning. In Advances in Neural Information
Processing Systems (NIPS), pages 41 – 48, Vancouver,
BC, Canada, 2007.

[3] S. Bickel. Ecml-pkdd discovery challenge 2006
overview. In ECML-PKDD Discovery Challenge
Workshop, pages 1–9, 2006.

[4] J. Blitzer, M. Dredze, and F. Pereira. Biographies,
bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In ACL, pages
440 – 447, Prague, Czech republic, 2007.

[5] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[6] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear
algorithms for online multitask classification. Journal
of Machine Learning Research, 11:2901 – 2934, 2010.

121



[7] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear
algorithms for online multitask classification. Journal
of Machine Learning Research, 11:2901 – 2934, 2010.

[8] N. Cesa-Bianchi, A. Conconi, and C. Gentile.
Second-order perceptron algorithm. Siam Journal on
Computing, 34(3):640–668, 2005.

[9] J. Chen, L. Tang, J. Liu, and J. Ye. A convex
formulation for learning shared structures from
multiple tasks. In ICML, pages 137 – 144, Montreal,
QC, Canada, 2009.

[10] J. Chen, J. Zhou, and J. Ye. Integrating low-rank and
group-sparse structures for robust multi-task learning.
In ACM SIGKDD, pages 42 – 50, San Diego, CA,
United states, 2011.

[11] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and
Y. Zheng. Nus-wide: A real-world web image database
from national university of singapore. In CIVR 2009 -
Proceedings of the ACM International Conference on
Image and Video Retrieval, pages 368 – 375, Santorini
Island, Greece, 2009.

[12] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7:551 – 585,
2006.

[13] K. Crammer, M. Dredze, and F. Pereira. Exact convex
confidence-weighted learning. In NIPS, pages 345 –
352, Vancouver, BC, Canada, 2009.

[14] K. Crammer, A. Kulesza, and M. Dredze. Adaptive
regularization of weight vectors. Machine Learning,
91(2):155 – 187, 2013.

[15] F. Dinuzzo, G. Pillonetto, and G. De Nicolao.
Client-server multitask learning from distributed
datasets. IEEE Transactions on Neural Networks,
22(2):290 – 303, 2011.

[16] M. Dredze and K. Crammer. Online methods for
multi-domain learning and adaptation. In EMNLP,
pages 689 – 697, Honolulu, HI, United states, 2008.

[17] M. Dredze, K. Crammer, and F. Pereira.
Confidence-weighted linear classification. In ICML,
pages 264 – 271, Helsinki, Finland, 2008.

[18] T. Evgeniou and M. Pontil. Regularized multi-task
learning. In ACM SIGKDD, pages 109 – 117, Seattle,
WA, United states, 2004.

[19] A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A
dirty model for multi-task learning. In NIPS,
Vancouver, BC, Canada, 2010.

[20] R. Jin, S. C. H. Hoi, and T. Yang. Online multiple
kernel learning: Algorithms and mistake bounds.
Algorithmic Learning Theory, 6331:390–404, 2010.

[21] X. Jin, F. Zhuang, S. Wang, Q. He, and Z. Shi. Shared
structure learning for multiple tasks with multiple
views. In ECML PKDD 2013, volume 8189 LNAI,
pages 353 – 368, Prague, Czech republic, 2013.

[22] X. Jin, F. Zhuang, H. Xiong, C. Du, P. Luo, and
Q. He. Multi-task multi-view learning for
heterogeneous tasks. In CIKM, pages 441–450, New
York, NY, USA, 2014. ACM.

[23] B. Li, P. Zhao, S. C. H. Hoi, and V. Gopalkrishnan.
Pamr: Passive aggressive mean reversion strategy for
portfolio selection. Machine Learning, 87(2):221–258,
2012.

[24] F.-F. Li and P. Perona. A bayesian hierarchical model
for learning natural scene categories. In CVPR,
volume II, pages 524 – 531, San Diego, CA, United
states, 2005.

[25] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91 – 110, 2004.

[26] F. Rosenblatt. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological Review, 65(6):386–408, 1958.

[27] P. Ruvolo and E. Eaton. Online multi-task learning
via sparse dictionary optimization. In AAAI,
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